MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Contracting differential equations in weighted Banach spaces

Author(s)
Srinivasan, Anand; Slotine, Jean-Jacques
Thumbnail
DownloadAccepted version (329.4Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Geodesic contraction in vector-valued differential equations is readily verified by linearized operators which are uniformly negative-definite in the Riemannian metric. In the infinite-dimensional setting, however, such analysis is generally restricted to norm-contracting systems. We develop a generalization of geodesic contraction rates to Banach spaces using a smoothly-weighted semi-inner product structure on tangent spaces. We show that negative contraction rates in bijectively weighted spaces imply asymptotic norm-contraction, and apply recent results on asymptotic contractions in Banach spaces to establish the existence of fixed points. We show that contraction in surjectively weighted spaces verify non-equilibrium asymptotic properties, such as convergence to finite- and infinite-dimensional subspaces, submanifolds, limit cycles, and phase-locking phenomena. We use contraction rates in weighted Sobolev spaces to establish existence and continuous data dependence in nonlinear PDEs, and pose a method for constructing weak solutions using vanishing one-sided Lipschitz approximations. We discuss applications to control and order reduction of PDEs.
Date issued
2023-01
URI
https://hdl.handle.net/1721.1/154986
Department
Massachusetts Institute of Technology. Department of Mathematics; Massachusetts Institute of Technology. Nonlinear Systems Laboratory
Journal
Journal of Differential Equations
Publisher
Elsevier BV
Citation
Srinivasan, Anand and Slotine, Jean-Jacques. 2023. "Contracting differential equations in weighted Banach spaces." Journal of Differential Equations, 344.
Version: Author's final manuscript
ISSN
0022-0396

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.