MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ketamine can produce oscillatory dynamics by engaging mechanisms dependent on the kinetics of NMDA receptors

Author(s)
Adam, Elie M; Kowalski, Marek; Akeju, Oluwaseun; Miller, Earl K.; Brown, Emery Neal; McCarthy, Michelle M.; Kopell, Nancy; ... Show more Show less
Thumbnail
Downloadadam-et-al-2024-ketamine-can-produce-oscillatory-dynamics-by-engaging-mechanisms-dependent-on-the-kinetics-of-nmda.pdf (16.62Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Ketamine is an N-methyl-D-aspartate (NMDA)-receptor antagonist that produces sedation, analgesia, and dissociation at low doses and profound unconsciousness with antinociception at high doses. At high and low doses, ketamine can generate gamma oscillations (>25 Hz) in the electroencephalogram (EEG). The gamma oscillations are interrupted by slow-delta oscillations (0.1 to 4 Hz) at high doses. Ketamine’s primary molecular targets and its oscillatory dynamics have been characterized. However, how the actions of ketamine at the subcellular level give rise to the oscillatory dynamics observed at the network level remains unknown. By developing a biophysical model of cortical circuits, we demonstrate how NMDA-receptor antagonism by ketamine can produce the oscillatory dynamics observed in human EEG recordings and nonhuman primate local field potential recordings. We have identified how impaired NMDA-receptor kinetics can cause disinhibition in neuronal circuits and how a disinhibited interaction between NMDA-receptor-mediated excitation and GABA-receptor-mediated inhibition can produce gamma oscillations at high and low doses, and slow-delta oscillations at high doses. Our work uncovers general mechanisms for generating oscillatory brain dynamics that differs from ones previously reported and provides important insights into ketamine’s mechanisms of action as an anesthetic and as a therapy for treatment-resistant depression.
Date issued
2024-05-20
URI
https://hdl.handle.net/1721.1/155039
Department
Picower Institute for Learning and Memory; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
Proceedings of the National Academy of Sciences
Publisher
Proceedings of the National Academy of Sciences
Citation
Adam, Elie, Kowalski, Marek, Akeju, Oluwaseun, Miller, Earl K., Brown, Emery N. et al. 2024. "Ketamine can produce oscillatory dynamics by engaging mechanisms dependent on the kinetics of NMDA receptors." Proceedings of the National Academy of Sciences, 121 (22).
Version: Final published version
ISSN
0027-8424
1091-6490

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.