Show simple item record

dc.contributor.authorParra Rubio, Alfonso
dc.contributor.authorFan, Dixia
dc.contributor.authorJenett, Benjamin
dc.contributor.authordel Águila Ferrandis, José
dc.contributor.authorTourlomousis, Filippos
dc.contributor.authorAbdel-Rahman, Amira
dc.contributor.authorPreiss, David
dc.contributor.authorZemánek, Jiri
dc.contributor.authorTriantafyllou, Michael
dc.contributor.authorGershenfeld, Neil
dc.date.accessioned2024-05-24T20:36:54Z
dc.date.available2024-05-24T20:36:54Z
dc.date.issued2023-08-01
dc.identifier.issn2169-5172
dc.identifier.issn2169-5180
dc.identifier.urihttps://hdl.handle.net/1721.1/155076
dc.description.abstractIn this study, we present a method to construct meter-scale deformable structures for underwater robotic applications by discretely assembling mechanical metamaterials. We address the challenge of scaling up nature-like deformable structures while remaining structurally efficient by combining rigid and compliant facets to form custom unit cells that assemble into lattices. The unit cells generate controlled local anisotropies that architect the global deformation of the robotic structure. The resulting flexibility allows better unsteady flow control that enables highly efficient propulsion and optimized force profile manipulations. We demonstrate the utility of this approach in two models. The first is a morphing beam snake-like robot that can generate thrust at specific anguilliform swimming parameters. The second is a morphing surface hydrofoil that, when compared with a rigid wing at the same angles of attack (AoAs), can increase the lift coefficient up to 0.6. In addition, in lower AoAs, the L∕D ratio improves by 5 times, whereas in higher angles it improves by 1.25 times. The resulting hydrodynamic performance demonstrates the potential to achieve accessible, scalable, and simple to design and assemble morphing structures for more efficient and effective future ocean exploration and exploitation.en_US
dc.language.isoen
dc.publisherMary Ann Liebert Incen_US
dc.relation.isversionof10.1089/soro.2022.0117en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMary Ann Liebert Incen_US
dc.titleModular Morphing Lattices for Large-Scale Underwater Continuum Robotic Structuresen_US
dc.typeArticleen_US
dc.identifier.citationModular Morphing Lattices for Large-Scale Underwater Continuum Robotic Structures Alfonso Parra Rubio, Dixia Fan, Benjamin Jenett, José del Águila Ferrandis, Filippos Tourlomousis, Amira Abdel-Rahman, David Preiss, Jiri Zemánek, Michael Triantafyllou, and Neil Gershenfeld Soft Robotics 2023 10:4, 724-736.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Bits and Atoms
dc.contributor.departmentMassachusetts Institute of Technology. Sea Grant College Program
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalSoft Roboticsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-05-24T20:31:52Z
dspace.orderedauthorsParra Rubio, A; Fan, D; Jenett, B; del Águila Ferrandis, J; Tourlomousis, F; Abdel-Rahman, A; Preiss, D; Zemánek, J; Triantafyllou, M; Gershenfeld, Nen_US
dspace.date.submission2024-05-24T20:31:54Z
mit.journal.volume10en_US
mit.journal.issue4en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record