MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Heterogeneous nucleation of polyethylene crystals on binary hexagonal nanoplatelets

Author(s)
Volchko, Nathan W.; Rutledge, Gregory C.
Thumbnail
Download10853_2024_Article_9683.pdf (3.584Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Crystal nucleating agents offer an effective strategy for controlling the morphology, dimensional stability and rate of solidification of polymers during processing. Molecular dynamics (MD) simulation can shed light on nucleation behavior at the nanoscopic length and time scales over which nucleation occurs. In this work, crystal nucleation of a polyethylene oligomer, n-pentacontane, on three graphene-like substrates, hexagonal boron nitride (hBN), molybdenum disulfide (MoS2), and tungsten disulfide (WS2), was simulated, and the thermodynamic efficiencies of these substrates as nucleating agents were determined. Experimental measurements of heterogeneous nucleation of a high-density polyethylene on nanoparticles of these three graphene-like materials were performed using the method of dispersed microdroplets in an immiscible polystyrene matrix. Qualitative agreement between simulations and experiments was observed for trends in nucleation rate, J, and interfacial free energy difference, Δσ, with $$J_{\text{hBN}} > J_{\text{MoS}_{2}} > J_{\text{WS}_{2}}$$ J hBN > J MoS 2 > J WS 2 . The simulations are then used to gain additional insight into the mechanisms of nucleation. Epitaxy is confirmed in all systems, with small mismatches in lattice spacing being accommodated by strain in the oligomer crystal. However, epitaxy alone is insufficient to explain the observed trends. The strength of interaction between the nucleating agent and the polyethylene oligomer is found to be the strongest predictor of nucleating agent efficiency. The strength of interaction is in turn related to the density of interaction sites at the interface: hBN has the highest density, and thus the fastest nucleation rate.
Date issued
2024-05-19
URI
https://hdl.handle.net/1721.1/155078
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Journal of Materials Science
Publisher
Springer Science and Business Media LLC
Citation
Volchko, N.W., Rutledge, G.C. Heterogeneous nucleation of polyethylene crystals on binary hexagonal nanoplatelets. J Mater Sci (2024).
Version: Final published version
ISSN
0022-2461
1573-4803

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.