MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Framework for Robust Assessment of Power Grid Stability and Resiliency

Author(s)
Vu, Thanh Long; Turitsyn, Konstantin
Thumbnail
DownloadAccepted version (1004.Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Security assessment of large-scale, strongly nonlinear power grids containing thousands to millions of interacting components is a computationally expensive task. Targeting at reducing the computational cost, this paper introduces a framework for constructing a robust assessment toolbox that can provide mathematically rigorous certificates for the grids' stability in the presence of variations in power injections, and for the grids' ability to withstand a bunch sources of faults. By this toolbox we can 'offline' screen a wide range of contingencies or power injection profiles, without reassessing the system stability on a regular basis. In particular, we formulate and solve two novel robust stability and resiliency assessment problems of power grids subject to the uncertainty in equilibrium points and uncertainty in fault-on dynamics. Furthermore, we bring in the quadratic Lyapunov functions approach to transient stability assessment, offering real-time construction of stability/resiliency certificates and real-time stability assessment. The effectiveness of the proposed techniques is numerically illustrated on a number of IEEE test cases.
Date issued
2017-03
URI
https://hdl.handle.net/1721.1/155100
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
IEEE Transactions on Automatic Control
Publisher
Institute of Electrical and Electronics Engineers
Citation
Thanh Long, Vu, and Konstantin Turitsyn. "A Framework for Robust Assessment of Power Grid Stability and Resiliency." Ieee Transactions on Automatic Control 62 3 (2017): 1165-77.
Version: Author's final manuscript
ISSN
0018-9286
1558-2523

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.