Show simple item record

dc.contributor.authorPapnai, Bhartendu
dc.contributor.authorChen, Ding-Rui
dc.contributor.authorGhosh, Rapti
dc.contributor.authorYen, Zhi-Long
dc.contributor.authorChen, Yu-Xiang
dc.contributor.authorRehman, Khalil Ur
dc.contributor.authorChen, Hsin-Yi Tiffany
dc.contributor.authorHsieh, Ya-Ping
dc.contributor.authorHofmann, Mario
dc.date.accessioned2024-06-13T18:19:17Z
dc.date.available2024-06-13T18:19:17Z
dc.date.issued2024-06-03
dc.identifier.issn2079-4991
dc.identifier.urihttps://hdl.handle.net/1721.1/155267
dc.description.abstractTwo-dimensional (2D) materials promise advances in electronic devices beyond Moore’s scaling law through extended functionality, such as non-monotonic dependence of device parameters on input parameters. However, the robustness and performance of effects like negative differential resistance (NDR) and anti-ambipolar behavior have been limited in scale and robustness by relying on atomic defects and complex heterojunctions. In this paper, we introduce a novel device concept that utilizes the quantum capacitance of junctions between 2D materials and molecular layers. We realized a variable capacitance 2D molecular junction (vc2Dmj) diode through the scalable integration of graphene and single layers of stearic acid. The vc2Dmj exhibits NDR with a substantial peak-to-valley ratio even at room temperature and an active negative resistance region. The origin of this unique behavior was identified through thermoelectric measurements and ab initio calculations to be a hybridization effect between graphene and the molecular layer. The enhancement of device parameters through morphology optimization highlights the potential of our approach toward new functionalities that advance the landscape of future electronics.en_US
dc.publisherMDPI AGen_US
dc.relation.isversionof10.3390/nano14110972en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleHarnessing Quantum Capacitance in 2D Material/Molecular Layer Junctions for Novel Electronic Device Functionalityen_US
dc.typeArticleen_US
dc.identifier.citationPapnai, B.; Chen, D.-R.; Ghosh, R.; Yen, Z.-L.; Chen, Y.-X.; Rehman, K.U.; Chen, H.-Y.T.; Hsieh, Y.-P.; Hofmann, M. Harnessing Quantum Capacitance in 2D Material/Molecular Layer Junctions for Novel Electronic Device Functionality. Nanomaterials 2024, 14, 972.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalNanomaterialsen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-06-13T14:54:16Z
dspace.date.submission2024-06-13T14:54:16Z
mit.journal.volume14en_US
mit.journal.issue11en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record