Making More with Less: Improving Software Testing Outcomes Using a Cross-Project and Cross-Language ML Classifier Based on Cost-Sensitive Training
Author(s)
Nascimento, Alexandre M.; Shimanuki, Gabriel Kenji G.; Dias, Luiz Alberto V.
Downloadapplsci-14-04880-v2.pdf (3.148Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
As digitalization expands across all sectors, the economic toll of software defects on the U.S. economy reaches up to $2.41 trillion annually. High-profile incidents like the Boeing 787-Max 8 crash have shown the devastating potential of these defects, highlighting the critical importance of software testing within quality assurance frameworks. However, due to its complexity and resource intensity, the exhaustive nature of comprehensive testing often surpasses budget constraints. This research utilizes a machine learning (ML) model to enhance software testing decisions by pinpointing areas most susceptible to defects and optimizing scarce resource allocation. Previous studies have shown promising results using cost-sensitive training to refine ML models, improving predictive accuracy by reducing false negatives through addressing class imbalances in defect prediction datasets. This approach facilitates more targeted and effective testing efforts. Nevertheless, these models’ in-company generalizability across different projects (cross-project) and programming languages (cross-language) remained untested. This study validates the approach’s applicability across diverse development environments by integrating various datasets from distinct projects into a unified dataset, using a more interpretable ML technique. The results demonstrate that ML can support software testing decisions, enabling teams to identify up to 7× more defective modules compared to benchmark with the same testing effort.
Date issued
2024-06-04Journal
Applied Sciences
Publisher
MDPI AG
Citation
Nascimento, A.M.; Shimanuki, G.K.G.; Dias, L.A.V. Making More with Less: Improving Software Testing Outcomes Using a Cross-Project and Cross-Language ML Classifier Based on Cost-Sensitive Training. Appl. Sci. 2024, 14, 4880.
Version: Final published version
ISSN
2076-3417