MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scalable optical manufacture of dynamic structural colour in stretchable materials

Author(s)
Miller, Benjamin Harvey; Liu, Helen; Kolle, Mathias
Thumbnail
DownloadAccepted version (38.00Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Structurally coloured materials that change their colour in response to mechanical stimuli are uniquely suited for optical sensing and visual communication1-4. The main barrier to their widespread adoption is a lack of manufacturing techniques that offer spatial control of the materials' nanoscale structures across macroscale areas. Here, by adapting Lippmann photography5, we report an approach for producing large-area, structurally coloured sheets with a rich and easily controlled design space of colour patterns, spectral properties, angular scattering characteristics and responses to mechanical stimuli. Relying on just a digital projector and commercially available photosensitive elastomers, our approach is fast, scalable, affordable and relevant for a wide range of manufacturing settings. We also demonstrate prototypes for mechanosensitive healthcare materials and colorimetric strain and stress sensing for human-computer interaction and robotics.
Date issued
2022-08-01
URI
https://hdl.handle.net/1721.1/155269
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Nature Materials
Publisher
Springer Science and Business Media LLC
Citation
Miller, B.H., Liu, H. & Kolle, M. Scalable optical manufacture of dynamic structural colour in stretchable materials. Nat. Mater. 21, 1014–1018 (2022).
Version: Author's final manuscript
ISSN
1476-1122
1476-4660

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.