MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Heat diffusion during thin-film composite membrane formation

Author(s)
Deshmukh, Akshay; Lienhard, John H.; Elimelech, Menachem
Thumbnail
DownloadAccepted version (7.056Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Thin-film composite (TFC) membranes, the backbone of modern reverse osmosis and nanofiltration, combine the high separation performance of a thin selective layer with the robust mechanical support. Previous studies have shown that heat released during interfacial polymerization (IP) can have a significant impact on the physical and chemical structure of the selective layer. In this study, we develop a multilayer transient heat conduction model to analyze how the thermal properties of the materials used in TFC fabrication impact interfacial temperature, focusing on support-free (SFIP), conventional (CIP), and interlayer-modulated IP (IMIP). Using a combination of analytic solutions and computational models, we demonstrate that the thermal effusivities of fluid and material layers can have a significant effect on the temporal evolution of interfacial temperature during IP. In CIP, we show that the presence of a polymeric support adjacent to the reaction interface yields a 20% to 60% increase in interfacial temperature rise, lasting for ∼ 0.1 s. Furthermore, we demonstrate that inorganic or metallic interlayers, which have high thermal effusivities, can lead to short-lived orderof-magnitude reductions in interfacial temperature rise. Finally, we provide analytical approximations for transient heat conduction through multilayered systems, enabling rapid evaluation of the thermal impact of novel membrane support and interlayer materials and structures on interfacial temperature during TFC fabrication. Quantifying how the thermal properties of solvents, support layers, and interlayers affect interfacial temperature during IP is critical for the rational design of new TFC membranes.
Date issued
2024-03
URI
https://hdl.handle.net/1721.1/155271
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Membrane Science
Publisher
Elsevier BV
Citation
Deshmukh, Akshay, Lienhard, John H. and Elimelech, Menachem. 2024. "Heat diffusion during thin-film composite membrane formation." Journal of Membrane Science, 696.
Version: Author's final manuscript
ISSN
0376-7388

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.