MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Selective fluoride removal from groundwater using CNT-CeO2 electrodes in capacitive deionization (CDI)

Author(s)
Liu, Xun; Rehman, Danyal; Shu, Yufei; Liu, Bei; Wang, Li; Li, Li; Wang, Mengxia; Wang, Kunkun; Han, Qi; Zang, Linlin; Lienhard, John H.; Wang, Zhongying; ... Show more Show less
Thumbnail
DownloadAccepted version (26.15Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Selective capacitive deionization (SCDI) is a promising process for preferentially removing specific ions from waters with complex compositions. The selectivity towards certain species in CDI is most frequently achieved through novel electrode materials with high affinities towards targeted species. In this study, we investigate the selective removal of fluoride ions from groundwater containing concentrated co-existing chloride ions. A carbon nanotube-CeO2 (CNT-CeO2) electrode is employed for the electro-sorption of fluoride ions. Our findings are compelling: when processing a mixed F−/Cl− solution comprising 10 mg/L F− and 100 mg/L Cl−, the CNT-CeO2 electrode is seen to reduce the concentration of F− ions to 1.5 mg/L in just 150 min, amounting to an 85 % F− removal efficiency, while the Cl− removal efficiency remains below 2 %. Importantly, this translates to a F−/Cl− separation factor of up to 4.16 when using the CeO2-based electrodes, which is 40 times higher than that achieved with conventional activated carbon (AC) electrodes. Furthermore, the energy consumption for treating actual groundwater using scaled-up equipment is impressively low at approximately 0.2 kWh/m3. The high affinity of CNT-CeO2 towards fluoride is attributed to the intercalation Faraday capacitance initiated by the reaction between F− with CeO2, as verified by the electrochemical quartz crystal microbalance (EQCM). Moreover, EQCM results show a substantial increase in both mass and current as the potential increased beyond 0.8 V vs Ag/AgCl, implying that the current surge is not a result of water splitting but rather the adsorption of F− onto the CNT-CeO2 electrode. The addition of CNTs substantially increases the conductivity of CeO2 electrodes and restricts the aggregation of CeO2, thereby accelerating ion diffusion and promoting selective adsorption characteristics. Importantly, our electro-driven approach demonstrates excellent adsorption–desorption over 20 cycles. This comprehensive study advances the technological development of selective CDI, while providing new insights for fluoride removal in groundwater.
Date issued
2024-02
URI
https://hdl.handle.net/1721.1/155273
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Center for Computational Science and Engineering
Journal
Chemical Engineering Journal
Publisher
Elsevier BV
Citation
Liu, Xun, Rehman, Danyal, Shu, Yufei, Liu, Bei, Wang, Li et al. 2024. "Selective fluoride removal from groundwater using CNT-CeO2 electrodes in capacitive deionization (CDI)." Chemical Engineering Journal, 482.
Version: Author's final manuscript
ISSN
1385-8947

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.