Show simple item record

dc.contributor.authorDatta, Rishabh
dc.contributor.authorAhmed, Faez
dc.contributor.authorHare, Jack D.
dc.date.accessioned2024-06-21T18:25:51Z
dc.date.available2024-06-21T18:25:51Z
dc.date.issued2024
dc.identifier.issn0093-3813
dc.identifier.issn1939-9375
dc.identifier.urihttps://hdl.handle.net/1721.1/155296
dc.description.abstractWe use machine-learning (ML) models to predict ion density and electron temperature from visible emission spectra, in a high-energy density pulsed-power-driven aluminum plasma, generated by an exploding wire array. Radiation transport simulations, which use spectral emissivity and opacity values generated using the collisional-radiative code PrismSPECT, are used to determine the spectral intensity generated by the plasma along the spectrometer’s line of sight (LOS). The spectra exhibit Al-II and Al-III lines, whose line ratios and line widths vary with the density and temperature of the plasma. These calculations provide a 2500-size synthetic dataset of 400-D intensity spectra, which is used to train and compare the performance of multiple ML models on a three-variable regression task. The AutoGluon model performs best, with an R2 -score of roughly 98% for density and temperature predictions. Simpler models random forest (RF), k -nearest neighbor (KNN), and deep neural network (DNN) also exhibit high R2 -scores ( > 90% ) for density and temperature predictions. These results demonstrate the potential of ML in providing rapid or real-time analysis of emission spectroscopy data in pulsed-power-driven plasmas.en_US
dc.description.sponsorshipNational Science Foundation (NSF)en_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionof10.1109/tps.2024.3364975en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceAuthoren_US
dc.titleMachine-Learning-Assisted Analysis of Visible Spectroscopy in Pulsed-Power-Driven Plasmasen_US
dc.typeArticleen_US
dc.identifier.citationR. Datta, F. Ahmed and J. D. Hare, "Machine-Learning-Assisted Analysis of Visible Spectroscopy in Pulsed-Power-Driven Plasmas," in IEEE Transactions on Plasma Science.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Center
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalTransactions on Plasma Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.identifier.doi10.1109/TPS.2024.3364975
dspace.date.submission2024-06-21T15:24:30Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record