MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Plasmoid Formation and Strong Radiative Cooling in a Driven Magnetic Reconnection Experiment

Author(s)
Datta, R.; Chandler, K.; Myers, C. E.; Chittenden, J. P.; Crilly, A. J.; Aragon, C.; Ampleford, D. J.; Banasek, J. T.; Edens, A.; Fox, W. R.; Hansen, S. B.; Harding, E. C.; Jennings, C. A.; Ji, H.; Kuranz, C. C.; Lebedev, S. V.; Looker, Q.; Patel, S. G.; Porwitzky, A.; Shipley, G. A.; Uzdensky, D. A.; Yager-Elorriaga, D. A.; Hare, J. D.; ... Show more Show less
Thumbnail
DownloadPlasmoid formation and strong radiative cooling in a driven magnetic reconnection experiment.pdf (7.763Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We present the first experimental study of plasmoid formation in a magnetic reconnection layer undergoing rapid radiative cooling, a regime relevant to extreme astrophysical plasmas. Two exploding aluminum wire arrays, driven by the 𝑍 machine, generate a reconnection layer (𝑆𝐿≈120) in which the cooling rate far exceeds the hydrodynamic transit rate (𝜏hydro/𝜏cool>100). The reconnection layer generates a transient burst of >1  keV x-ray emission, consistent with the formation and subsequent rapid cooling of the layer. Time-gated x-ray images show fast-moving (up to 50  km s−1) hotspots in the layer, consistent with the presence of plasmoids in 3D resistive magnetohydrodynamic simulations. X-ray spectroscopy shows that these hotspots generate the majority of Al K-shell emission (around 1.6 keV) prior to the onset of cooling, and exhibit temperatures (170 eV) much greater than that of the plasma inflows and the rest of the reconnection layer, thus providing insight into the generation of high-energy radiation in radiatively cooled reconnection events.
Date issued
2024-04-11
URI
https://hdl.handle.net/1721.1/155297
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Datta, R., Chandler, K., Myers, C. E., Chittenden, J. P., Crilly, A. J. et al. 2024. "Plasmoid Formation and Strong Radiative Cooling in a Driven Magnetic Reconnection Experiment." Physical Review Letters, 132 (15).
Version: Author's final manuscript
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.