MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Radiatively cooled magnetic reconnection experiments driven by pulsed power

Author(s)
Datta, R.; Chandler, K.; Myers, C. E.; Chittenden, J. P.; Crilly, A. J.; Aragon, C.; Ampleford, D. J.; Banasek, J. T.; Edens, A.; Fox, W. R.; Hansen, S. B.; Harding, E. C.; Jennings, C. A.; Ji, H.; Kuranz, C. C.; Lebedev, S. V.; Looker, Q.; Patel, S. G.; Porwitzky, A.; Shipley, G. A.; Uzdensky, D. A.; Yager-Elorriaga, D. A.; Hare, J. D.; ... Show more Show less
Thumbnail
Download052110_1_5.0201683.pdf (8.060Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We present evidence for strong radiative cooling in a pulsed-power-driven magnetic reconnection experiment. Two aluminum exploding wire arrays, driven by a 20 MA peak current, 300 ns rise time pulse from the Z machine (Sandia National Laboratories), generate strongly driven plasma flows (⁠ ⁠) with anti-parallel magnetic fields, which form a reconnection layer (⁠ ⁠) at the mid-plane. The net cooling rate far exceeds the Alfvénic transit rate (⁠ ⁠), leading to strong cooling of the reconnection layer. We determine the advected magnetic field and flow velocity using inductive probes positioned in the inflow to the layer, and inflow ion density and temperature from analysis of visible emission spectroscopy. A sharp decrease in x-ray emission from the reconnection layer, measured using filtered diodes and time-gated x-ray imaging, provides evidence for strong cooling of the reconnection layer after its initial formation. X-ray images also show localized hotspots, regions of strong x-ray emission, with velocities comparable to the expected outflow velocity from the reconnection layer. These hotspots are consistent with plasmoids observed in 3D radiative resistive magnetohydrodynamic simulations of the experiment. X-ray spectroscopy further indicates that the hotspots have a temperature (170 eV) much higher than the bulk layer (⁠ ⁠) and inflow temperatures (about ⁠) and that these hotspots generate the majority of the high-energy (⁠ ⁠) emission.
Date issued
2024-05-01
URI
https://hdl.handle.net/1721.1/155298
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
Physics of Plasmas
Publisher
AIP Publishing
Citation
R. Datta, K. Chandler, C. E. Myers, J. P. Chittenden, A. J. Crilly, C. Aragon, D. J. Ampleford, J. T. Banasek, A. Edens, W. R. Fox, S. B. Hansen, E. C. Harding, C. A. Jennings, H. Ji, C. C. Kuranz, S. V. Lebedev, Q. Looker, S. G. Patel, A. Porwitzky, G. A. Shipley, D. A. Uzdensky, D. A. Yager-Elorriaga, J. D. Hare; Radiatively cooled magnetic reconnection experiments driven by pulsed power. Phys. Plasmas 1 May 2024; 31 (5): 052110.
Version: Final published version
ISSN
1070-664X
1089-7674

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.