Show simple item record

dc.contributor.authorArya, Gaurav
dc.contributor.authorLi, William F.
dc.contributor.authorRoques-Carmes, Charles
dc.contributor.authorSoljačić, Marin
dc.contributor.authorJohnson, Steven G.
dc.contributor.authorLin, Zin
dc.date.accessioned2024-06-27T16:16:40Z
dc.date.available2024-06-27T16:16:40Z
dc.date.issued2024-04-23
dc.identifier.issn2330-4022
dc.identifier.issn2330-4022
dc.identifier.urihttps://hdl.handle.net/1721.1/155313
dc.description.abstractWe present a framework for the end-to-end optimization of metasurface imaging systems that reconstruct targets using compressed sensing, a technique for solving underdetermined imaging problems when the target object exhibits sparsity (e.g., the object can be described by a small number of nonzero values, but the positions of these values are unknown). We nest an iterative, unapproximated compressed sensing reconstruction algorithm into our end-to-end optimization pipeline, resulting in an interpretable, data-efficient method for maximally leveraging metaoptics to exploit object sparsity. We apply our framework to super-resolution imaging and high-resolution depth imaging with a phase-change material. In both situations, our end-to-end framework effectively optimizes metasurface structures for compressed sensing recovery, automatically balancing a number of complicated design considerations to select an imaging measurement matrix from a complex, physically constrained manifold with millions of dimensions. The optimized metasurface imaging systems are robust to noise, significantly improving over random scattering surfaces and approaching the ideal compressed sensing performance of a Gaussian matrix, showing how a physical metasurface system can demonstrably approach the mathematical limits of compressed sensing.en_US
dc.description.sponsorshipDepartment of Defense (DoD)en_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionof10.1021/acsphotonics.4c00259en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceAuthoren_US
dc.titleEnd-to-End Optimization of Metasurfaces for Imaging with Compressed Sensingen_US
dc.typeArticleen_US
dc.identifier.citationACS Photonics 2024, 11, 5, 2077–2087en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.relation.journalACS Photonicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.identifier.doi10.1021/acsphotonics.4c00259
dspace.date.submission2024-06-26T23:14:34Z
mit.journal.volume11en_US
mit.journal.issue5en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record