MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Review of the Brain’s Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM)

Author(s)
Irastorza-Valera, Luis; Soria-Gómez, Edgar; Benitez, José María; Montáns, Francisco J.; Saucedo-Mora, Luis
Thumbnail
Downloadbiomimetics-09-00362.pdf (1.813Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections—the connectome—both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Date issued
2024-06-14
URI
https://hdl.handle.net/1721.1/155542
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Journal
Biomimetics
Publisher
MDPI AG
Citation
Irastorza-Valera, L.; Soria-Gómez, E.; Benitez, J.M.; Montáns, F.J.; Saucedo-Mora, L. Review of the Brain’s Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics 2024, 9, 362.
Version: Final published version
ISSN
2313-7673

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.