MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algebraic ER=EPR and complexity transfer

Author(s)
Engelhardt, Netta; Liu, Hong
Thumbnail
Download13130_2024_Article_23850.pdf (4.867Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We propose an algebraic definition of ER=EPR in the GN → 0 limit, which associates bulk spacetime connectivity/disconnectivity to the operator algebraic structure of a quantum gravity system. The new formulation not only includes information on the amount of entanglement, but also more importantly the structure of entanglement. We give an independent definition of a quantum wormhole as part of the proposal. This algebraic version of ER=EPR sheds light on a recent puzzle regarding spacetime disconnectivity in holographic systems with O $$ \mathcal{O} $$ (1/GN) entanglement. We discuss the emergence of quantum connectivity in the context of black hole evaporation and further argue that at the Page time, the black hole-radiation system undergoes a transition involving the transfer of an emergent type III1 subalgebra of high complexity operators from the black hole to radiation. We argue this is a general phenomenon that occurs whenever there is an exchange of dominance between two competing quantum extremal surfaces.
Date issued
2024-07-02
URI
https://hdl.handle.net/1721.1/155577
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Journal
Journal of High Energy Physics
Publisher
Springer Science and Business Media LLC
Citation
Engelhardt, N., Liu, H. Algebraic ER=EPR and complexity transfer. J. High Energ. Phys. 2024, 13 (2024).
Version: Final published version
ISSN
1029-8479

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.