MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The black hole interior from non-isometric codes and complexity

Author(s)
Akers, Chris; Engelhardt, Netta; Harlow, Daniel; Penington, Geoff; Vardhan, Shreya
Thumbnail
Download13130_2024_Article_23775.pdf (3.604Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Quantum error correction has given us a natural language for the emergence of spacetime, but the black hole interior poses a challenge for this framework: at late times the apparent number of interior degrees of freedom in effective field theory can vastly exceed the true number of fundamental degrees of freedom, so there can be no isometric (i.e. inner-product preserving) encoding of the former into the latter. In this paper we explain how quantum error correction nonetheless can be used to explain the emergence of the black hole interior, via the idea of “non-isometric codes protected by computational complexity”. We show that many previous ideas, such as the existence of a large number of “null states”, a breakdown of effective field theory for operations of exponential complexity, the quantum extremal surface calculation of the Page curve, post-selection, “state-dependent/state-specific” operator reconstruction, and the “simple entropy” approach to complexity coarse-graining, all fit naturally into this framework, and we illustrate all of these phenomena simultaneously in a soluble model.
Date issued
2024-06-24
URI
https://hdl.handle.net/1721.1/155666
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Journal
Journal of High Energy Physics
Publisher
Springer Science and Business Media LLC
Citation
Akers, C., Engelhardt, N., Harlow, D. et al. The black hole interior from non-isometric codes and complexity. J. High Energ. Phys. 2024, 155 (2024).
Version: Final published version
ISSN
1029-8479

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.