Show simple item record

dc.contributor.authorFenelon, Benjamin
dc.contributor.authorGjesteby, Lars A.
dc.contributor.authorGuan, Webster
dc.contributor.authorPark, Juhyuk
dc.contributor.authorChung, Kwanghun
dc.contributor.authorBrattain, Laura J.
dc.date.accessioned2024-07-25T14:20:14Z
dc.date.available2024-07-25T14:20:14Z
dc.date.issued2022-09-19
dc.identifier.urihttps://hdl.handle.net/1721.1/155787
dc.description2022 IEEE High Performance Extreme Computing Conference (HPEC) 19-23 September 2022 Waltham, MA, USAen_US
dc.description.abstractHigh inference times of machine learning-based axon tracing algorithms pose a significant challenge to the practical analysis and interpretation of large-scale brain imagery. This paper explores a distributed data pipeline that employs a SLURM-based job array to run multiple machine learning algorithm predictions simultaneously. Image volumes were split into N (1–16) equal chunks that are each handled by a unique compute node and stitched back together into a single 3D prediction. Preliminary results comparing the inference speed of 1 versus 16 node job arrays demonstrated a 90.95% decrease in compute time for 32 GB input volume and 88.41% for 4 GB input volume. The general pipeline may serve as a baseline for future improved implementations on larger input volumes which can be tuned to various application domains.en_US
dc.language.isoen
dc.publisherIEEE|2022 IEEE High Performance Extreme Computing Conference (HPEC)en_US
dc.relation.isversionof10.1109/hpec55821.2022.9926403en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceAuthoren_US
dc.titleA Scalable Inference Pipeline for 3D Axon Tracing Algorithmsen_US
dc.typeArticleen_US
dc.identifier.citationFenelon, Benjamin, Gjesteby, Lars A., Guan, Webster, Park, Juhyuk, Chung, Kwanghun et al. 2022. "A Scalable Inference Pipeline for 3D Axon Tracing Algorithms." 00.
dc.contributor.departmentLincoln Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Science
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2024-07-25T13:42:40Z
dspace.orderedauthorsFenelon, B; Gjesteby, LA; Guan, W; Park, J; Chung, K; Brattain, LJen_US
dspace.date.submission2024-07-25T13:42:42Z
mit.journal.volume00en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record