Show simple item record

dc.contributor.authorHemberg, Erik
dc.contributor.authorO'Reilly, Una-May
dc.contributor.authorToutouh, Jamal
dc.date.accessioned2024-08-02T15:48:04Z
dc.date.available2024-08-02T15:48:04Z
dc.date.issued2024-07-14
dc.identifier.isbn979-8-4007-0494-9
dc.identifier.urihttps://hdl.handle.net/1721.1/155923
dc.descriptionGECCO ’24, July 14–18, 2024, Melbourne, VIC, Australiaen_US
dc.description.abstractTraining autoencoders is non-trivial. Convergence to the identity function or overfitting are common pitfalls. Population based algorithms like coevolutionary algorithms can provide diversity. To more robustly train autoencoders, we introduce a novel cooperative coevolutionary algorithm that exploits a spatial topology. We investigate the impact of algorithm parameters and design choices on the performance. On a simple tunable benchmark problem we observe that the performance can be improved over that of an conventionally trained autoencoder. However, the training convergence can be slow, despite the final model performance being competitive with a conventional autoencoder.en_US
dc.publisherACM|Genetic and Evolutionary Computation Conferenceen_US
dc.relation.isversionof10.1145/3638529.3654127en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAssociation for Computing Machineryen_US
dc.titleCooperative Coevolutionary Spatial Topologies for Autoencoder Trainingen_US
dc.typeArticleen_US
dc.identifier.citationHemberg, Erik, O'Reilly, Una-May and Toutouh, Jamal. 2024. "Cooperative Coevolutionary Spatial Topologies for Autoencoder Training."
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2024-08-01T07:46:49Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2024-08-01T07:46:49Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record