MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Microlensing Near Macro-Caustics

Author(s)
Weisenbach, Luke; Anguita, Timo; Miralda-Escudé, Jordi; Oguri, Masamune; Saha, Prasenjit; Schechter, Paul L.; ... Show more Show less
Thumbnail
Download11214_2024_Article_1088.pdf (1.314Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Microlensing near macro-caustics is a complex phenomenon in which swarms of micro-images produced by micro-caustics form on both sides of a macro-critical curve. Recent discoveries of highly magnified images of individual stars in massive galaxy cluster lenses, predicted to be formed by these micro-image swarms, have stimulated studies on this topic. In this article, we explore microlensing near macro-caustics using both simulations and analytic calculations. We show that the mean total magnification of the micro-image swarms follows that of an extended source in the absence of microlensing. Micro-caustics join into a connected network in a region around the macro-critical line of a width proportional to the surface density of microlenses; within this region, the increase of the mean magnification toward the macro-caustic is driven by the increase of the number of micro-images rather than individual magnifications of micro-images. The maximum achievable magnification in micro-caustic crossings decreases with the mass fraction in microlenses. We conclude with a review of applications of this microlensing phenomenon, including limits to the fraction of dark matter in compact objects, and searches of Population III stars and dark matter subhalos. We argue that the discovered highly magnified stars at cosmological distances already imply that less than ∼ 10% of the dark matter may be in the form of compact objects with mass above ∼10−6 𝑀⊙.
Date issued
2024-07-30
URI
https://hdl.handle.net/1721.1/155945
Department
MIT Kavli Institute for Astrophysics and Space Research
Journal
Space Science Reviews
Publisher
Springer Netherlands
Citation
Weisenbach, L., Anguita, T., Miralda-Escudé, J. et al. Microlensing Near Macro-Caustics. Space Sci Rev 220, 57 (2024).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.