Show simple item record

dc.contributor.authorFoo, Zi Hao
dc.contributor.authorLiu, Suwei
dc.contributor.authorKanias, Lucy
dc.contributor.authorLee, Trent R.
dc.contributor.authorHeath, Samuel M.
dc.contributor.authorTomi, Yasuhiro
dc.contributor.authorMiyabe, Tomotsugu
dc.contributor.authorKeten, Sinan
dc.contributor.authorLueptow, Richard M.
dc.contributor.authorLienhard, John H
dc.date.accessioned2024-08-19T15:13:34Z
dc.date.available2024-08-19T15:13:34Z
dc.date.issued2024-08-15
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/1721.1/156258
dc.description.abstractMembranes facilitate scalable and continuous lithium concentration from hypersaline salt lakes and battery leachates. Conventional nanofiltration (NF) membranes, however, exhibit poor monovalent selectivity in high-salinity environments due to weakened exclusion mechanisms. This study examines polyamide NF membranes coated with polyelectrolytes enriched with ammonium groups to maintain high monovalent cation selectivity in hypersaline conditions. Over 8000 ion rejection measurements are recorded using salt lake brines and battery leachates. The experiments exemplify the coated membrane's ability to reduce magnesium concentrations to 0.14% from salt lakes and elevate lithium purity to 98% from battery leachates, in a single filtration stage. The membrane's selectivity is retained after 12 weeks in acidic conditions. Molecular dynamics analyses reveal that the ammonium groups create an electrostatic barrier at low pH, selectively hindering multivalent cation transport. This is corroborated by the Coulombic attraction between cations and carboxylate groups, along with a repulsive barrier from ammonium groups. Despite a 14.7% increase in specific energy, a two-stage NF system using the coated membranes for lithium recovery significantly reduces permeate magnesium composition to 0.031% from Chilean salt lake brines. For NMC leachates, the coated membranes achieve permeate lithium purity exceeding 99.5%, yielding enhanced permeate quality with minor increases in energy demands.en_US
dc.language.isoen_US
dc.publisherWileyen_US
dc.relation.isversionof10.1002/adfm.202408685en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivsen_US
dc.rightsAn error occurred on the license name.*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceAuthoren_US
dc.titlePositively-Coated Nanofiltration Membranes for Lithium Recovery from Battery Leachates and Salt-Lakes: Ion Transport Fundamentals and Module Performanceen_US
dc.typeArticleen_US
dc.identifier.citationZ. H. Foo, S. Liu, L. Kanias, T. R. Lee, S. M. Heath, Y. Tomi, T. Miyabe, S. Keten, R. M. Lueptow, J. H. Lienhard, Positively-Coated Nanofiltration Membranes for Lithium Recovery from Battery Leachates and Salt-Lakes: Ion Transport Fundamentals and Module Performance. Adv. Funct. Mater. 2024, 2408685.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalAdvanced Functional Materialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2024-08-19T15:09:03Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record