MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Train following model for urban rail transit performance analysis

Author(s)
Saidi, Saeid; Koutsopoulos, Haris N; Wilson, Nigel HM; Zhao, Jinhua
Thumbnail
DownloadPublished version (6.880Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
In this paper we introduce a mesoscopic Train Following Model which accurately captures train interactions and predicts delays based on spacing between consecutive trains. The Train Following Model is applied recursively block by block estimating train trajectories given initial conditions (i.e. the trajectory of an initial train and dispatching headways of following trains from the terminal station). We validate the proposed model using data from the Red Line of the Massachusetts Bay Transportation Authority (MBTA). The results indicate that it accurately represents train operations under both normal and disrupted conditions. Based on the model developed, the impacts of factors such as service frequency, headway variations, passenger demand, and initial train delays on line performance (i.e. line throughput and train knock-on delays) are explored. The proposed Train Following Model is generic and can be developed based on readily available historical train tracking data. It is not as resource intensive as micro simulation models, while it can efficiently address the drawbacks of macro-scale analytical models and complex discrete algebraic models. The proposed model can be used to predict system performance either off-line or in real-time.
Date issued
2023-03
URI
https://hdl.handle.net/1721.1/156449
Department
Massachusetts Institute of Technology. Institute for Data, Systems, and Society; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Urban Studies and Planning
Journal
Transportation Research Part C: Emerging Technologies
Publisher
Elsevier BV
Citation
Saidi, Saeid, Koutsopoulos, Haris N, Wilson, Nigel HM and Zhao, Jinhua. 2023. "Train following model for urban rail transit performance analysis." Transportation Research Part C: Emerging Technologies, 148.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.