Show simple item record

dc.contributor.authorFried, Zachary TP
dc.contributor.authorLee, Kin Long Kelvin
dc.contributor.authorByrne, Alex N
dc.contributor.authorMcGuire, Brett A
dc.date.accessioned2024-09-20T17:02:51Z
dc.date.available2024-09-20T17:02:51Z
dc.date.issued2023
dc.identifier.urihttps://hdl.handle.net/1721.1/156919
dc.description.abstractMachine learning techniques have been previously used to model and predict column densities in the TMC-1 dark molecular cloud. In interstellar sources further along the path of star formation, such as those where a protostar itself has been formed, the chemistry is known to be drastically different from that of largely quiescent dark clouds. To that end, we have tested the ability of various machine learning models to fit the column densities of the molecules detected in source B of the Class 0 protostellar system IRAS 16293-2422. By including a simple encoding of isotopic composition in our molecular feature vectors, we also examine for the first time how well these models can replicate the isotopic ratios. Finally, we report the predicted column densities of the chemically relevant molecules that may be excellent targets for radioastronomical detection in IRAS 16293-2422B.en_US
dc.language.isoen
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionof10.1039/d3dd00020fen_US
dc.rightsCreative Commons Attribution-Noncommercialen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleImplementation of rare isotopologues into machine learning of the chemical inventory of the solar-type protostellar source IRAS 16293-2422en_US
dc.typeArticleen_US
dc.identifier.citationDigital Discovery, 2023,2, 952-966en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.relation.journalDigital Discoveryen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-09-20T16:51:39Z
dspace.orderedauthorsFried, ZTP; Lee, KLK; Byrne, AN; McGuire, BAen_US
dspace.date.submission2024-09-20T16:51:41Z
mit.journal.volume2en_US
mit.journal.issue4en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record