MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Additive manufacturing of interlocking glass masonry units

Author(s)
Massimino, Daniel; Townsend, Ethan; Folinus, Charlotte; Stern, Michael; Becker, Kaitlyn
Thumbnail
Download40940_2024_Article_279.pdf (2.381Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
In comparison to traditional glass casting, glass additive manufacturing (AM) presents an opportunity to increase design flexibility and reduce tooling costs for the production of highly variable geometries. While the latter has been extensively explored for masonry units, there is minimal research on the former for its viability to produce structural building components. This paper encompasses design, manufacturing, and experimental testing to assess the feasibility of using glass AM to produce interlocking masonry units for the construction industry. The glass 3D printer employed in this study is capable of printing a maximum volume of 32.5 × 32.5 × 38 cm–suitable for producing full-size masonry units. As part of this work, we discuss how to adapt design guidelines for glass AM to produce interlocking units. To evaluate fabrication ease and structural performance, three fabrication methods, Fully Hollow, Print-Cast, and Fully Printed, are compared. To compare the accuracy, repeatability, and structural capacity of each masonry unit, geometric analysis, surface roughness, and mechanical testing is conducted. Results varied by fabrication method, with average strength ranging from 3.64− 42.3 MPa for initial fracture and 64.0–118 MPa for ultimate strength. Accuracy in print dimensions was less than 1 mm with a standard deviation of 0.14–1.6 mm. Results demonstrated that Fully Hollow masonry units provide a more immediate path to implementation, while Fully Printed units have the potential to provide an entirely glass, transparent, and circular building component fabrication method.
Date issued
2024-09-16
URI
https://hdl.handle.net/1721.1/156928
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Glass Structures & Engineering
Publisher
Springer International Publishing
Citation
Massimino, D., Townsend, E., Folinus, C. et al. Additive manufacturing of interlocking glass masonry units. Glass Struct Eng (2024).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.