MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Point-Defect Segregation and Space-Charge Potentials at the Σ5(310)[001] Grain Boundary in Ceria

Author(s)
Usler, Adrian L.; Heelweg, Henrik J.; De Souza, Roger A.; Genreith-Schriever, Annalena R.
Thumbnail
Downloadsolids-05-00027.pdf (4.260Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The atomistic structure and point-defect thermodynamics of the model Σ5(310)[001] grain boundary in CeO2 were explored with atomistic simulations. An interface with a double-diamond-shaped structural repeat unit was found to have the lowest energy. Segregation energies were calculated for oxygen vacancies, electron polarons, gadolinium and scandium acceptor cations, and tantalum donor cations. These energies deviate strongly from their bulk values over the same length scale, thus indicating a structural grain-boundary width of approximately 1.5 nm. However, an analysis revealed no unambiguous correlation between segregation energies and local structural descriptors, such as interatomic distance or coordination number. From the segregation energies, the grain-boundary space-charge potential in Gouy–Chapman and restricted-equilibrium regimes was calculated as a function of temperature for dilute solutions of (i) oxygen vacancies and acceptor cations and (ii) electron polarons and donor cations. For the latter, the space-charge potential is predicted to change from negative to positive in the restricted-equilibrium regime. For the former, the calculation of the space-charge potential from atomistic segregation energies is shown to require the inclusion of the segregation energies for acceptor cations. Nevertheless, the space-charge potential in the restricted-equilibrium regime can be described well with an empirical model employing a single effective oxygen-vacancy segregation energy.
Date issued
2024-08-03
URI
https://hdl.handle.net/1721.1/157268
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
solids
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Usler, A.L.; Heelweg, H.J.; De Souza, R.A.; Genreith-Schriever, A.R. Point-Defect Segregation and Space-Charge Potentials at the Σ5(310)[001] Grain Boundary in Ceria. Solids 2024, 5, 404-421.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.