Show simple item record

dc.contributor.authorNagpal, Rashmi
dc.contributor.authorKhan, Ariba
dc.contributor.authorBorkar, Mihir
dc.contributor.authorGupta, Amar
dc.date.accessioned2024-10-15T16:53:25Z
dc.date.available2024-10-15T16:53:25Z
dc.date.issued2024-09-20
dc.identifier.urihttps://hdl.handle.net/1721.1/157313
dc.description.abstractMachine learning algorithms significantly impact decision-making in high-stakes domains, necessitating a balance between fairness and accuracy. This study introduces an in-processing, multi-objective framework that leverages the Reject Option Classification (ROC) algorithm to simultaneously optimize fairness and accuracy while safeguarding protected attributes such as age and gender. Our approach seeks a multi-objective optimization solution that balances accuracy, group fairness loss, and individual fairness loss. The framework integrates fairness objectives without relying on a weighted summation method, instead focusing on directly optimizing the trade-offs. Empirical evaluations on publicly available datasets, including German Credit, Adult Income, and COMPAS, reveal several significant findings: the ROC-based approach demonstrates superior performance, achieving an accuracy of 94.29%, an individual fairness loss of 0.04, and a group fairness loss of 0.06 on the German Credit dataset. These results underscore the effectiveness of our framework, particularly the ROC component, in enhancing both the fairness and performance of machine learning models.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/make6030105en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleA Multi-Objective Framework for Balancing Fairness and Accuracy in Debiasing Machine Learning Modelsen_US
dc.typeArticleen_US
dc.identifier.citationNagpal, R.; Khan, A.; Borkar, M.; Gupta, A. A Multi-Objective Framework for Balancing Fairness and Accuracy in Debiasing Machine Learning Models. Mach. Learn. Knowl. Extr. 2024, 6, 2130-2148.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalmachine learning & knowledge extractionen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-09-27T13:18:28Z
dspace.date.submission2024-09-27T13:18:28Z
mit.journal.volume6en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record