MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Global optimization: a machine learning approach

Author(s)
Bertsimas, Dimitris; Margaritis, Georgios
Thumbnail
Download10898_2024_Article_1434.pdf (2.102Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Many approaches for addressing global optimization problems typically rely on relaxations of nonlinear constraints over specific mathematical primitives. This is restricting in applications with constraints that are implicit or consist of more general primitives. Trying to address such limitations, Bertsimas and Ozturk (2023) proposed OCTHaGOn as a way of solving very general global optimization problems by approximating the nonlinear constraints using hyperplane-based decision-trees and then using those trees to construct a unified MIO approximation of the original problem. We provide extensions to this approach, by (i) approximating the original problem using other MIO-representable ML models besides decision trees, such as gradient boosted trees, multi layer perceptrons and suport vector machines (ii) proposing adaptive sampling procedures for more accurate ML-based constraint approximations, (iii) utilizing robust optimization to account for the uncertainty of the sample-dependent training of the ML models, (iv) leveraging a family of relaxations to address the infeasibilities of the final MIO approximation. We then test the enhanced framework in 81 global optimization instances. We show improvements in solution feasibility and optimality in the majority of instances. We also compare against BARON, showing improved optimality gaps and solution times in more than 9 instances.
Date issued
2024-10-07
URI
https://hdl.handle.net/1721.1/157394
Department
Sloan School of Management; Massachusetts Institute of Technology. Operations Research Center
Journal
Journal of Global Optimization
Publisher
Springer US
Citation
Bertsimas, D., Margaritis, G. Global optimization: a machine learning approach. J Glob Optim (2024).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.