Show simple item record

dc.contributor.authorNarayanan, Hariharan
dc.contributor.authorSheffield, Scott
dc.contributor.authorTao, Terence
dc.date.accessioned2024-10-23T15:40:41Z
dc.date.available2024-10-23T15:40:41Z
dc.date.issued2023-12-28
dc.identifier.urihttps://hdl.handle.net/1721.1/157405
dc.description.abstractAssociated to two given sequences of eigenvalues λ 1 ≥ ⋯ ≥ λ n and μ 1 ≥ ⋯ ≥ μ n is a natural polytope, the polytope of augmented hives with the specified boundary data, which is associated to sums of random Hermitian matrices with these eigenvalues. As a first step towards the asymptotic analysis of random hives, we show that if the eigenvalues are drawn from the GUE ensemble, then the associated augmented hives exhibit concentration as n → ∞ . Our main ingredients include a representation due to Speyer of augmented hives involving a supremum of linear functions applied to a product of Gelfand–Tsetlin polytopes; known results by Klartag on the KLS conjecture in order to handle the aforementioned supremum; covariance bounds of Cipolloni–Erdős–Schröder of eigenvalue gaps of GUE; and the use of the theory of determinantal processes to analyze the GUE minor process.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00440-023-01250-4en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleSums of GUE matrices and concentration of hives from correlation decay of eigengapsen_US
dc.typeArticleen_US
dc.identifier.citationNarayanan, H., Sheffield, S. & Tao, T. Sums of GUE matrices and concentration of hives from correlation decay of eigengaps. Probab. Theory Relat. Fields 190, 1121–1165 (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalProbability Theory and Related Fieldsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-10-19T03:40:02Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2024-10-19T03:40:02Z
mit.journal.volume190en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record