MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

New Generalized Derivatives for Solving Variational Inequalities Using the Nonsmooth Newton Methods

Author(s)
Song, Yingkai; Barton, Paul I.
Thumbnail
Download10957_2024_Article_2548.pdf (522.0Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Variational inequality (VI) generalizes many mathematical programming problems and has a wide variety of applications. One class of VI solution methods is to reformulate a VI into a normal map nonsmooth equation system, which is then solved using nonsmooth equation-solving techniques. In this article, we propose a first practical approach for furnishing B-subdifferential elements of the normal map, which in turn enables solving the normal map equation system using variants of the B-subdifferential-based nonsmooth Newton method. It is shown that our new method requires less stringent conditions to achieve local convergence than some other established methods, and thus guarantees convergence in certain cases where other methods may fail. We compute a B-subdifferential element using the LD-derivative, which is a recently established generalized derivative concept. In our new approach, an LD-derivative is computed by solving a sequence of strictly convex quadratic programs, which can be terminated early under certain conditions. Numerical examples are provided to illustrate the convergence properties of our new method, based on a proof-of-concept implementation in Python.
Date issued
2024-10-19
URI
https://hdl.handle.net/1721.1/157415
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Process Systems Engineering Laboratory
Journal
Journal of Optimization Theory and Applications
Publisher
Springer US
Citation
Song, Y., Barton, P.I. New Generalized Derivatives for Solving Variational Inequalities Using the Nonsmooth Newton Methods. J Optim Theory Appl (2024).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.