MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extracting structured data from organic synthesis procedures using a fine-tuned large language model

Author(s)
Ai, Qianxiang; Meng, Fanwang; Shi, Jiale; Pelkie, Brenden; Coley, Connor W
Thumbnail
DownloadPublished version (1.515Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The popularity of data-driven approaches and machine learning (ML) techniques in the field of organic chemistry and its various subfields has increased the value of structured reaction data. Most data in chemistry is represented by unstructured text, and despite the vastness of the organic chemistry literature (papers, patents), manual conversion from unstructured text to structured data remains a largely manual endeavor. Software tools for this task would facilitate downstream applications such as reaction prediction and condition recommendation. In this study, we fine-tune a large language model (LLM) to extract reaction information from organic synthesis procedure text into structured data following the Open Reaction Database (ORD) schema, a comprehensive data structure designed for organic reactions. The fine-tuned model produces syntactically correct ORD records with an average accuracy of 91.25% for ORD “messages” (e.g., full compound, workups, or condition definitions) and 92.25% for individual data fields (e.g., compound identifiers, mass quantities), with the ability to recognize compound-referencing tokens and to infer reaction roles. We investigate its failure modes and evaluate performance on specific subtasks such as reaction role classification.
Date issued
2024-09-11
URI
https://hdl.handle.net/1721.1/157469
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Digital Discovery
Publisher
Royal Society of Chemistry
Citation
Digital Discovery, 2024,3, 1822-1831

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.