MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phenomenological observations of quinone-mediated zinc oxidation in an alkaline environment

Author(s)
Mallia, Christopher T; Brushett, Fikile R
Thumbnail
DownloadPublished version (656.4Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial http://creativecommons.org/licenses/by-nc/3.0/
Metadata
Show full item record
Abstract
Redox-mediated electrochemistry is an area of growing interest, particularly in the context of energy storage. The development of such systems requires knowledge of underlying reaction mechanisms, which bear similarities to the processes that underpin corrosion and semiconductor electrochemistry. Herein we discuss an example system, quinone-mediated zinc oxidation in an alkaline environment, using knowledge from the corrosion and semiconductor fields to understand the phenomenological aspects of the reaction.
Date issued
2024-10-03
URI
https://hdl.handle.net/1721.1/157525
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Chemical Communications
Publisher
Royal Society of Chemistry
Citation
Chem. Commun., 2024,60, 11363-11366
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.