Show simple item record

dc.contributor.authorNiu, Yaoshen
dc.contributor.authorHu, Zilin
dc.contributor.authorMao, Huican
dc.contributor.authorZhou, Lin
dc.contributor.authorWang, Liguang
dc.contributor.authorLou, Xiaobing
dc.contributor.authorZhang, Bo
dc.contributor.authorXiao, Dongdong
dc.contributor.authorYang, Yang
dc.contributor.authorDing, Feixiang
dc.contributor.authorRong, Xiaohui
dc.contributor.authorXu, Juping
dc.contributor.authorYin, Wen
dc.contributor.authorZhang, Nian
dc.contributor.authorLi, Zhiwei
dc.contributor.authorLu, Yaxiang
dc.contributor.authorHu, Bingwen
dc.contributor.authorLu, Jun
dc.contributor.authorLi, Ju
dc.contributor.authorHu, Yong-Sheng
dc.date.accessioned2024-11-08T21:49:51Z
dc.date.available2024-11-08T21:49:51Z
dc.date.issued2024-10-15
dc.identifier.urihttps://hdl.handle.net/1721.1/157526
dc.description.abstractNa-ion batteries (NIBs) are emerging as a promising alternative to Li-ion batteries (LIBs). To align with sustainability principles, the design of electrode materials must incorporate considerations for abundant and environmentally friendly elements, such as redox-active Fe. Despite its appeal, the enduring challenge of Fe migration in layered cathodes remains inadequately addressed over decades. Here, we propose a “seat-squatting” strategy via Li-substitution to fundamentally suppress Fe migration. Li is strategically introduced to migrate first, occupying available migration sites without inducing structural damage and effectively raising the activation energy for Fe migration. Experimental and theoretical validation using O3-Na0.83Li0.17Fe0.33Mn0.5O2 (NaLFM) demonstrates a robust suppression of irreversible Fe migration. As a result, the NaLFM cathode delivers enhanced structural and electrochemical cycling stability. This work illustrates a compelling strategy to curb irreversible Fe migration in NIBs, offering a pathway for the development of stable and cost-effective layered oxides based on Fe redox centers.en_US
dc.language.isoen
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionof10.1039/d4ee01867ben_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleA “seat-squatting” strategy via lithium substitution to suppress Fe-migration in Na layered oxide cathodesen_US
dc.typeArticleen_US
dc.identifier.citationEnergy Environ. Sci., 2024,17, 7958-7968en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.relation.journalEnergy & Environmental Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-11-08T21:43:16Z
dspace.orderedauthorsNiu, Y; Hu, Z; Mao, H; Zhou, L; Wang, L; Lou, X; Zhang, B; Xiao, D; Yang, Y; Ding, F; Rong, X; Xu, J; Yin, W; Zhang, N; Li, Z; Lu, Y; Hu, B; Lu, J; Li, J; Hu, Y-Sen_US
dspace.date.submission2024-11-08T21:43:19Z
mit.journal.volume17en_US
mit.journal.issue20en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record