Show simple item record

dc.contributor.authorLake, Jack R
dc.contributor.authorRufer, Simon
dc.contributor.authorJames, Jim
dc.contributor.authorPruyne, Nathan
dc.contributor.authorScourtas, Aristana
dc.contributor.authorSchwarting, Marcus
dc.contributor.authorAmbadkar, Aadit
dc.contributor.authorFoster, Ian
dc.contributor.authorBlaiszik, Ben
dc.contributor.authorVaranasi, Kripa K
dc.date.accessioned2024-11-08T21:57:16Z
dc.date.available2024-11-08T21:57:16Z
dc.date.issued2024-10-08
dc.identifier.urihttps://hdl.handle.net/1721.1/157527
dc.description.abstractThe adverse effects of electrochemical bubbles on the performance of gas-evolving electrodes are well known, but studies on the degree of adhered bubble-caused inactivation, and how inactivation changes during bubble evolution are limited. We study electrode inactivation caused by oxygen evolution while using surface engineering to control bubble formation. We find that the inactivation of the entire projected area, as is currently believed, is a poor approximation which leads to non-physical results. Using a machine learning-based image-based bubble detection method to analyze large quantities of experimental data, we show that bubble impacts are small for surface engineered electrodes which promote high bubble projected areas while maintaining low direct bubble contact. We thus propose a simple methodology for more accurately estimating the true extent of bubble inactivation, which is closer to the area which is directly in contact with the bubbles.en_US
dc.language.isoen
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionof10.1039/d4nr02628den_US
dc.rightsCreative Commons Attribution-Noncommercialen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleMachine learning-guided discovery of gas evolving electrode bubble inactivationen_US
dc.typeArticleen_US
dc.identifier.citationLake, Jack R, Rufer, Simon, James, Jim, Pruyne, Nathan, Scourtas, Aristana et al. 2024. "Machine learning-guided discovery of gas evolving electrode bubble inactivation." Nanoscale.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalNanoscaleen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-11-08T21:51:28Z
dspace.orderedauthorsLake, JR; Rufer, S; James, J; Pruyne, N; Scourtas, A; Schwarting, M; Ambadkar, A; Foster, I; Blaiszik, B; Varanasi, KKen_US
dspace.date.submission2024-11-08T21:51:30Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record