Show simple item record

dc.contributor.authorLee, Tae Hoon
dc.contributor.authorBalcik, Marcel
dc.contributor.authorWu, Wan-Ni
dc.contributor.authorPinnau, Ingo
dc.contributor.authorSmith, Zachary P
dc.date.accessioned2024-11-26T15:33:39Z
dc.date.available2024-11-26T15:33:39Z
dc.date.issued2024-08-16
dc.identifier.urihttps://hdl.handle.net/1721.1/157679
dc.description.abstractFine-tuning microporosity in polymers with a scalable method has great potential for energy-efficient molecular separations. Here, we report a dual-phase molecular engineering approach to prepare microporous polymer nanofilms through interfacial polymerization. By integrating two micropore-generating units such as a water-soluble Tröger’s base diamine (TBD) and a contorted spirobifluorene (SBF) motif, the resultant TBD-SBF polyamide shows an unprecedentedly high surface area. An ultrathin TBD-SBF membrane (~20 nm) exhibits up to 220 times improved solvent permeance with a moderate molecular weight cutoff (~640 g mol−1) compared to the control membrane prepared by conventional chemistry, which outperforms currently reported polymeric membranes. We also highlight the great potential of the SBF-based microporous polyamides for hydrocarbon separations by exploring the isomeric effects of aqueous phase monomers to manipulate microporosity.en_US
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Scienceen_US
dc.relation.isversionof10.1126/sciadv.adp6666en_US
dc.rightsCreative Commons Attribution-Noncommercialen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceAmerican Association for the Advancement of Scienceen_US
dc.titleDual-phase microporous polymer nanofilms by interfacial polymerization for ultrafast molecular separationen_US
dc.typeArticleen_US
dc.identifier.citationTae Hoon Lee et al. ,Dual-phase microporous polymer nanofilms by interfacial polymerization for ultrafast molecular separation.Sci. Adv.10,eadp6666(2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-11-26T15:24:54Z
dspace.orderedauthorsLee, TH; Balcik, M; Wu, W-N; Pinnau, I; Smith, ZPen_US
dspace.date.submission2024-11-26T15:24:56Z
mit.journal.volume10en_US
mit.journal.issue33en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record