MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A nonparametric learning framework for nonlinear robust output regulation

Author(s)
Wang, Shimin; Guay, Martin; Chen, Zhiyong; Braatz, Richard D
Thumbnail
DownloadAccepted version (2.030Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
A nonparametric learning solution framework is proposed for the global nonlinear robust output regulation problem. We first extend the assumption that the steady-state generator is linear in the exogenous signal to the more relaxed assumption that it is polynomial in the exogenous signal. Additionally, a nonparametric learning framework is proposed to eliminate the construction of an explicit regressor, as required in the adaptive method, which can potentially simplify the implementation and reduce the computational complexity of existing methods. With the help of the proposed framework, the robust nonlinear output regulation problem can be converted into a robust non-adaptive stabilization problem for the augmented system with integral input-to-state stable (iISS) inverse dynamics. Moreover, a dynamic gain approach can adaptively raise the gain to a sufficiently large constant to achieve stabilization without requiring any a priori knowledge of the uncertainties appearing in the dynamics of the exosystem and the system. Furthermore, we apply the nonparametric learning framework to globally reconstruct and estimate multiple sinusoidal signals with unknown frequencies without the need for adaptive parametric techniques. An explicit nonlinear mapping can directly provide the estimated parameters, which will exponentially converge to the unknown frequencies. Finally, a feedforward control design is proposed to solve the linear output regulation problem using the nonparametric learning framework. Two simulation examples are provided to illustrate the effectiveness of the theoretical results.
Date issued
2024
URI
https://hdl.handle.net/1721.1/157698
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
IEEE Transactions on Automatic Control
Publisher
Institute of Electrical and Electronics Engineers
Citation
S. Wang, M. Guay, Z. Chen and R. D. Braatz, "A nonparametric learning framework for nonlinear robust output regulation," in IEEE Transactions on Automatic Control, doi: 10.1109/TAC.2024.3470065.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.