MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Direct Optimization Algorithm for Input-Constrained MPC

Author(s)
Wu, Liang; Braatz, Richard D
Thumbnail
DownloadAccepted version (224.6Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Providing an execution time certificate is a pressing requirement when deploying Model Predictive Control (MPC) in real-time embedded systems such as microcontrollers. Real-time MPC requires that its worst-case (maximum) execution time must be theoretically guaranteed to be smaller than the sampling time in closed-loop. This technical note considers input-constrained MPC problems and exploits the structure of the resulting box-constrained QPs. Then, we propose a \textit{cost-free} and \textit{data-independent} initialization strategy, which enables us, for the first time, to remove the initialization assumption of feasible full-Newton interior-point algorithms. We prove that the number of iterations of our proposed algorithm is \textit{only dimension-dependent} (\textit{data-independent}), \textit{simple-calculated}, and \textit{exact} (not \textit{worst-case}) with the value ⌈log(2nϵ)−2log(2n√2n√+2√−1)⌉+1, where n denotes the problem dimension and ϵ denotes the constant stopping tolerance. These features enable our algorithm to trivially certify the execution time of nonlinear MPC (via online linearized schemes) or adaptive MPC problems. The execution-time-certified capability of our algorithm is theoretically and numerically validated through an open-loop unstable AFTI-16 example.
Date issued
2024
URI
https://hdl.handle.net/1721.1/157705
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
IEEE Transactions on Automatic Control
Publisher
Institute of Electrical and Electronics Engineers
Citation
L. Wu and R. D. Braatz, "A Direct Optimization Algorithm for Input-Constrained MPC," in IEEE Transactions on Automatic Control.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.