Show simple item record

dc.contributor.authorBaptista, Ricardo
dc.contributor.authorMarzouk, Youssef
dc.contributor.authorZahm, Olivier
dc.date.accessioned2024-12-05T15:37:43Z
dc.date.available2024-12-05T15:37:43Z
dc.date.issued2023-11-16
dc.identifier.urihttps://hdl.handle.net/1721.1/157755
dc.description.abstractTransportation of measure provides a versatile approach for modeling complex probability distributions, with applications in density estimation, Bayesian inference, generative modeling, and beyond. Monotone triangular transport maps—approximations of the Knothe–Rosenblatt (KR) rearrangement—are a canonical choice for these tasks. Yet the representation and parameterization of such maps have a significant impact on their generality and expressiveness, and on properties of the optimization problem that arises in learning a map from data (e.g., via maximum likelihood estimation). We present a general framework for representing monotone triangular maps via invertible transformations of smooth functions. We establish conditions on the transformation such that the associated infinite-dimensional minimization problem has no spurious local minima, i.e., all local minima are global minima; and we show for target distributions satisfying certain tail conditions that the unique global minimizer corresponds to the KR map. Given a sample from the target, we then propose an adaptive algorithm that estimates a sparse semi-parametric approximation of the underlying KR map. We demonstrate how this framework can be applied to joint and conditional density estimation, likelihood-free inference, and structure learning of directed graphical models, with stable generalization performance across a range of sample sizes.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10208-023-09630-xen_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleOn the Representation and Learning of Monotone Triangular Transport Mapsen_US
dc.typeArticleen_US
dc.identifier.citationBaptista, R., Marzouk, Y. & Zahm, O. On the Representation and Learning of Monotone Triangular Transport Maps. Found Comput Math 24, 2063–2108 (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.relation.journalFoundations of Computational Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-12-05T09:31:22Z
dc.language.rfc3066en
dc.rights.holderSFoCM
dspace.embargo.termsY
dspace.date.submission2024-12-05T09:31:21Z
mit.journal.volume24en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record