MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling the Impact of Electrolyte Flow on Heat Management in a Li-Ion Convection Cell

Author(s)
Gao, Weiran; Drake, Javit; Brushett, Fikile R
Thumbnail
DownloadPublished version (1.155Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
In response to challenges in the thermal management of lithium-ion batteries (LIBs), we investigate the concept of circulating electrolyte through the porous electrodes and separator to facilitate effective, uniform, and real-time temperature regulation. We show, through physics-based electrothermal modeling and dimensional analysis of a single, planar LIB cell, that electrolyte convection can simultaneously draw heat from the cell and suppress heat generation from entropy change, charge-transfer, and ohmic losses, and that the cell temperature rise can be effectively mitigated when heat removal matches or exceeds heat generation. These findings distinguish internal convection from external surface cooling approaches used in conventional thermal management that often lead to a tradeoff between heat and mass transport. In a simulated exemplary 5.7-C case, a LIB cell with stationary electrolyte must stop discharging at only 54% of its capacity due to cell temperature rise to an upper threshold (325 K); with sufficient electrolyte flow (∼1 μm s−1 for a single cell, or a residence time of ∼200 s), the cell can be maintained below 315 K while delivering 98% of its capacity. Finally, to illustrate the potential for dynamic temperature regulation, we simulate scenarios where cells already experiencing self-heating can instantly arrest temperature rise with the onset of convection.
Date issued
2023-09-01
URI
https://hdl.handle.net/1721.1/157756
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Journal of The Electrochemical Society
Publisher
The Electrochemical Society
Citation
Weiran Gao et al 2023 J. Electrochem. Soc. 170 090508
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.