MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterizing the Impact of Oligomerization on Redox Flow Cell Performance

Author(s)
Weiss, Trent A; Fan, Gang; Neyhouse, Bertrand J; Moore, Evan B; Furst, Ariel; Brushett, Fikile R; ... Show more Show less
Thumbnail
DownloadPublished version (4.579Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Redox flow batteries (RFBs) are hindered by complex failure modes, particularly crossover through the membrane, resulting in capacity fade and reduced cycling efficiencies. Redox‐active oligomers (RAOs) have recently been proposed for mitigating this phenomenon while maintaining sufficient transport properties; however, to date, few studies have quantified how the chemical and electrochemical properties of RAOs influence their performance in redox flow cells. Here, we demonstrate that oligomeric derivatives of 2,2,6,6‐tetramethylpiperidine 1‐oxyl (TEMPO) exhibit lower diffusivities than the monomeric species but retain facile charge transfer characteristics. The size‐dependent variations in mass transport rates directly translate to differences in flow cell polarization and symmetric cycling performance. Post‐mortem analyses reveal that oligomerization does not meaningfully alter decay processes as evinced by similar capacity fade across all species. Broadly, these findings corroborate and extend upon previously developed relationships between molecular size, electrochemical properties, and flow cell performance.
Date issued
2023-08
URI
https://hdl.handle.net/1721.1/157757
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Batteries & Supercaps
Publisher
Wiley
Citation
T. A. Weiss, G. Fan, B. J. Neyhouse, E. B. Moore, A. Furst, F. R. Brushett, Batteries & Supercaps 2023, 6, e202300034.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.