MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust Reinforcement Learning Strategies with Evolving Curriculum for Efficient Bus Operations in Smart Cities

Author(s)
Tang, Yuhan; Qu, Ao; Jiang, Xuan; Mo, Baichuan; Cao, Shangqing; Rodriguez, Joseph; Koutsopoulos, Haris N; Wu, Cathy; Zhao, Jinhua; ... Show more Show less
Thumbnail
Downloadsmartcities-07-00141.pdf (1.273Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Public transit systems are critical to the quality of urban life, and enhancing their efficiency is essential for building cost-effective and sustainable smart cities. Historically, researchers sought reinforcement learning (RL) applications to mitigate bus bunching issues with holding strategies. Nonetheless, these attempts often led to oversimplifications and misalignment with the goal of reducing the total time passengers spent in the system, resulting in less robust or non-optimal solutions. In this study, we introduce a novel setting where each bus, supervised by an RL agent, can appropriately form aggregated policies from three strategies (holding, skipping station, and turning around to serve the opposite direction). It’s difficult to learn them all together, due to learning complexity, we employ domain knowledge and develop a gradually expanding action space curriculum, enabling agents to learn these strategies incrementally. We incorporate Long Short-Term Memory (LSTM) in our model considering the temporal interrelation among these actions. To address the inherent uncertainties of real-world traffic systems, we impose Domain Randomization (DR) on variables such as passenger demand and bus schedules. We conduct extensive numerical experiments with the integration of synthetic and real-world data to evaluate our model. Our methodology proves effective, enhancing bus schedule reliability and reducing total passenger waiting time by over 15%, thereby improving bus operation efficiency and smoothering operations of buses that align with sustainable goals. This work highlights the potential of robust RL combined with curriculum learning for optimizing public transport in smart cities, offering a scalable solution for real-world multi-agent systems.
Date issued
2024-11-29
URI
https://hdl.handle.net/1721.1/157936
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Urban Studies and Planning
Journal
Smart Cities
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Tang, Y.; Qu, A.; Jiang, X.; Mo, B.; Cao, S.; Rodriguez, J.; Koutsopoulos, H.N.; Wu, C.; Zhao, J. Robust Reinforcement Learning Strategies with Evolving Curriculum for Efficient Bus Operations in Smart Cities. Smart Cities 2024, 7, 3658-3677.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.