Show simple item record

dc.contributor.authorRivera Torres, Pedro Juan
dc.contributor.authorChen, Chen
dc.contributor.authorMacías-Aguayo, Jaime
dc.contributor.authorRodríguez González, Sara
dc.contributor.authorPrieto Tejedor, Javier
dc.contributor.authorLlanes Santiago, Orestes
dc.contributor.authorGarcía, Carlos Gershenson
dc.contributor.authorKanaan Izquierdo, Samir
dc.date.accessioned2025-01-10T21:46:03Z
dc.date.available2025-01-10T21:46:03Z
dc.date.issued2024-12-19
dc.identifier.urihttps://hdl.handle.net/1721.1/157959
dc.description.abstractProbabilistic Boolean Networks can capture the dynamics of complex biological systems as well as other non-biological systems, such as manufacturing systems and smart grids. In this proof-of-concept manuscript, we propose a Probabilistic Boolean Network architecture with a learning process that significantly improves the prediction of the occurrence of faults and failures in smart-grid systems. This idea was tested in a Probabilistic Boolean Network model of the WSCC nine-bus system that incorporates Intelligent Power Routers on every bus. The model learned the equality and negation functions in the different experiments performed. We take advantage of the complex properties of Probabilistic Boolean Networks to use them as a positive feedback adaptive learning tool and to illustrate that these networks could have a more general use than previously thought. This multi-layered PBN architecture provides a significant improvement in terms of performance for fault detection, within a positive-feedback network structure that is more tolerant of noise than other techniques.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/en17246399en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleA Learning Probabilistic Boolean Network Model of a Smart Grid with Applications in System Maintenanceen_US
dc.typeArticleen_US
dc.identifier.citationRivera Torres, P.J.; Chen, C.; Macías-Aguayo, J.; Rodríguez González, S.; Prieto Tejedor, J.; Llanes Santiago, O.; García, C.G.; Kanaan Izquierdo, S. A Learning Probabilistic Boolean Network Model of a Smart Grid with Applications in System Maintenance. Energies 2024, 17, 6399.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Transportation & Logisticsen_US
dc.relation.journalEnergiesen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-12-27T14:02:56Z
dspace.date.submission2024-12-27T14:02:56Z
mit.journal.volume17en_US
mit.journal.issue24en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record