Show simple item record

dc.contributor.authorXu, Peiyu
dc.contributor.authorBangaru, Sai
dc.contributor.authorLi, Tzu-Mao
dc.contributor.authorZhao, Shuang
dc.date.accessioned2025-01-29T18:28:06Z
dc.date.available2025-01-29T18:28:06Z
dc.date.issued2024-12-03
dc.identifier.isbn979-8-4007-1131-2
dc.identifier.urihttps://hdl.handle.net/1721.1/158126
dc.descriptionSA Conference Papers ’24, December 03–06, 2024, Tokyo, Japanen_US
dc.description.abstractPhysics-based differentiable rendering requires estimating boundary path integrals emerging from the shift of discontinuities (e.g., visibility boundaries). Previously, although the mathematical formulation of boundary path integrals has been established, efficient and robust estimation of these integrals has remained challenging. Specifically, state-of-the-art boundary sampling methods all rely on primary-sample-space guiding precomputed using sophisticated data structures—whose performance tends to degrade for finely tessellated geometries. In this paper, we address this problem by introducing a new Markov-Chain-Monte-Carlo (MCMC) method. At the core of our technique is a local perturbation step capable of efficiently exploring highly fragmented primary sample spaces via specifically designed jumping rules. We compare the performance of our technique with several state-of-the-art baselines using synthetic differentiable-rendering and inverse-rendering experiments.en_US
dc.publisherACM|SIGGRAPH Asia 2024 Conference Papersen_US
dc.relation.isversionofhttps://doi.org/10.1145/3680528.3687622en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAssociation for Computing Machineryen_US
dc.titleMarkov-Chain Monte Carlo Sampling of Visibility Boundaries for Differentiable Renderingen_US
dc.typeArticleen_US
dc.identifier.citationXu, Peiyu, Bangaru, Sai, Li, Tzu-Mao and Zhao, Shuang. 2024. "Markov-Chain Monte Carlo Sampling of Visibility Boundaries for Differentiable Rendering."
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2025-01-01T08:50:36Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2025-01-01T08:50:36Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record