Show simple item record

dc.contributor.authorAndre, Mickensone
dc.contributor.authorKolishetti, Nagesh
dc.contributor.authorYndart, Adriana
dc.contributor.authorVashist, Arti
dc.contributor.authorNair, Madhavan
dc.contributor.authorRaymond, Andrea D.
dc.date.accessioned2025-01-31T18:37:31Z
dc.date.available2025-01-31T18:37:31Z
dc.date.issued2025-01-09
dc.identifier.urihttps://hdl.handle.net/1721.1/158143
dc.description.abstractBackground: Human immunodeficiency virus (HIV) establishes latent infections in cellular reservoirs, including microglia. HC69 cells, a microglial model of HIV latency, contain an HIV promoter long terminal repeat (LTR)-GFP reporter and were used for testing the efficacy of a two-step magnetoelectric nanoparticle (MENP) and extracellular vesicle (xEV) latency-targeting (MELT) nanotherapeutic. GFP expression in HC69 at rest is low (GFPLo), and upon exposure to LTR, transcription-activating agents (i.e., TNF-α) are induced to be high expressing (GFPHi). Methods: The first step of MELT utilized ZL0580, an HIV Tat inhibitor loaded into EVs (80%) via incubation. ZL0580-EVs were taken up by GFPLo and blocked LTR transcriptional reactivation by 50% and were 90% less toxic than ZL0580 alone. The second step in MELT involved conjugation of monomethyl auristatin E (MMAE) to MENPs. HPLC measurements showed 80% MMAE attachment to MENPs. Flow cytometry-based measurements of the membrane potential indicated that the membranes of GFPHi HC69 were 60% more polarized than GFPLo HC69 cells. More MMAE–MENPs were internalized by GFPLo HC69. Results: Using a mixed-cell blood–brain barrier (BBB) Transwell model, we demonstrated that 20% of MELT crossed the BBB, was taken up by HC69 cells, and reduced LTR reactivation by 10%. Conclusions: Overall, this study demonstrated that MELT can potentially be utilized as a nanotherapeutic to target HIV latency in microglia.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/biomedicines13010147en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleMagnetoelectric Extracellular Vesicle Latency-Targeting (MELT) Nanotherapeutic for the Block-Lock-and-Kill HIV Eradication Strategyen_US
dc.typeArticleen_US
dc.identifier.citationAndre, M.; Kolishetti, N.; Yndart, A.; Vashist, A.; Nair, M.; Raymond, A.D. Magnetoelectric Extracellular Vesicle Latency-Targeting (MELT) Nanotherapeutic for the Block-Lock-and-Kill HIV Eradication Strategy. Biomedicines 2025, 13, 147.en_US
dc.relation.journalBiomedicinesen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-01-24T13:16:02Z
dspace.date.submission2025-01-24T13:16:02Z
mit.journal.volume13en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record