Show simple item record

dc.contributor.authorRaghavan, Priyanka
dc.contributor.authorHaas, Brittany C
dc.contributor.authorRuos, Madeline E
dc.contributor.authorSchleinitz, Jules
dc.contributor.authorDoyle, Abigail G
dc.contributor.authorReisman, Sarah E
dc.contributor.authorSigman, Matthew S
dc.contributor.authorColey, Connor W
dc.date.accessioned2025-02-05T21:27:19Z
dc.date.available2025-02-05T21:27:19Z
dc.date.issued2023-12-27
dc.identifier.urihttps://hdl.handle.net/1721.1/158178
dc.description.abstractModels can codify our understanding of chemical reactivity and serve a useful purpose in the development of new synthetic processes via, for example, evaluating hypothetical reaction conditions or in silico substrate tolerance. Perhaps the most determining factor is the composition of the training data and whether it is sufficient to train a model that can make accurate predictions over the full domain of interest. Here, we discuss the design of reaction datasets in ways that are conducive to data-driven modeling, emphasizing the idea that training set diversity and model generalizability rely on the choice of molecular or reaction representation. We additionally discuss the experimental constraints associated with generating common types of chemistry datasets and how these considerations should influence dataset design and model building.en_US
dc.language.isoen
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionof10.1021/acscentsci.3c01163en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAmerican Chemical Societyen_US
dc.titleDataset Design for Building Models of Chemical Reactivityen_US
dc.typeArticleen_US
dc.identifier.citationPriyanka Raghavan, Brittany C. Haas, Madeline E. Ruos, Jules Schleinitz, Abigail G. Doyle, Sarah E. Reisman, Matthew S. Sigman, and Connor W. Coley. ACS Central Science 2023 9 (12), 2196-2204.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalACS Central Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-02-05T20:29:41Z
dspace.orderedauthorsRaghavan, P; Haas, BC; Ruos, ME; Schleinitz, J; Doyle, AG; Reisman, SE; Sigman, MS; Coley, CWen_US
dspace.date.submission2025-02-05T20:29:43Z
mit.journal.volume9en_US
mit.journal.issue12en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record