MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

RoboGrammar: Graph Grammar for Terrain-Optimized Robot Design

Author(s)
Zhao, Allan; Xu, Jie; Konakovic-Lukovic, Mina; Hughes, Josephine; Spielberg, Andrew; Rus, Daniela; Matusik, Wojciech; ... Show more Show less
Thumbnail
Download3414685.3417831.pdf (18.18Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present RoboGrammar, a fully automated approach for generating optimized robot structures to traverse given terrains. In this framework, we represent each robot design as a graph, and use a graph grammar to express possible arrangements of physical robot assemblies. Each robot design can then be expressed as a sequence of grammar rules. Using only a small set of rules our grammar can describe hundreds of thousands of possible robot designs. The construction of the grammar limits the design space to designs that can be fabricated. For a given input terrain, the design space is searched to find the top performing robots and their corresponding controllers. We introduce Graph Heuristic Search - a novel method for efficient search of combinatorial design spaces. In Graph Heuristic Search, we explore the design space while simultaneously learning a function that maps incomplete designs (e.g., nodes in the combinatorial search tree) to the best performance values that can be achieved by expanding these incomplete designs. Graph Heuristic Search prioritizes exploration of the most promising branches of the design space. To test our method we optimize robots for a number of challenging and varied terrains. We demonstrate that RoboGrammar can successfully generate nontrivial robots that are optimized for a single terrain or a combination of terrains.
Date issued
2020-11-26
URI
https://hdl.handle.net/1721.1/158234
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
ACM Transactions on Graphics
Publisher
Association for Computing Machinery
Citation
Zhao, Allan, Xu, Jie, Konakovic-Lukovic, Mina, Hughes, Josephine, Spielberg, Andrew et al. 2020. "RoboGrammar: Graph Grammar for Terrain-Optimized Robot Design." ACM Transactions on Graphics.
Version: Final published version
ISBN
978-1-4503-8107-9

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.