MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impact of lesion preparation-induced calcified plaque defects in vascular intervention for atherosclerotic disease: in silico assessment

Author(s)
Sogbadji, Jonas; Kadry, Karim; Poletti, Gianluca; Berti, Francesca; Edelman, Elazer R.; Nezami, Farhad R.; ... Show more Show less
Thumbnail
Download10237_2024_Article_1923.pdf (2.494Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Percutaneous coronary interventions in highly calcified atherosclerotic lesions are challenging due to the high mechanical stiffness that significantly restricts stent expansion. Intravascular lithotripsy (IVL) is a novel vessel preparation technique with the potential to improve interventional outcomes by inducing microscopic and macroscopic cracks to enhance stent expansion. However, the exact mechanism of action for IVL is poorly understood, and it remains unclear whether the improvement in-stent expansion is caused by either the macro-cracks allowing the vessel to open or the micro-cracks altering the bulk material properties. In silico models offer a robust means to examine (a) diverse lesion morphologies, (b) a range of lesion modifications to address these deficiencies, and (c) the correlation between calcium morphology alteration and improved stenting outcomes. These models also help identify which lesions would benefit the most from IVL. In this study, we develop an in silico model of stent expansion to study the effect of macro-crack morphology on interventional outcomes in clinically inspired geometries. Larger IVL-induced defects promote more post-stent lumen gain. IVL seems to induce better stenting outcomes for large calcified lesions. IVL defects that split calcified plaque in two parts are the most beneficial for stenting angioplasty, regardless of the calcified plaque size. Location of the IVL defect does not seem to matter with respect to lumen gain. These findings underscore the potential of IVL to enhance lesion compliance and improve clinical outcomes in PCI. The macroscopic defects induced by IVL seem to have a substantial impact on post-stent outcomes.
Date issued
2025-01-21
URI
https://hdl.handle.net/1721.1/158262
Department
Massachusetts Institute of Technology. Institute for Medical Engineering & Science
Journal
Biomechanics and Modeling in Mechanobiology
Publisher
Springer Berlin Heidelberg
Citation
Sogbadji, J., Kadry, K., Poletti, G. et al. Impact of lesion preparation-induced calcified plaque defects in vascular intervention for atherosclerotic disease: in silico assessment. Biomech Model Mechanobiol (2025).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.