MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction

Author(s)
Schauman, S. S.; Iyer, Siddharth S.; Sandino, Christopher M.; Yurt, Mahmut; Cao, Xiaozhi; Liao, Congyu; Ruengchaijatuporn, Natthanan; Chatnuntawech, Itthi; Tong, Elizabeth; Setsompop, Kawin; ... Show more Show less
Thumbnail
Download10334_2024_Article_1222.pdf (4.808Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Object Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning. Materials and methods This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence. Results The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS’s efficiency in expediting iterative reconstruction while maintaining high-quality results. Discussion By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.
Date issued
2025-02-01
URI
https://hdl.handle.net/1721.1/158263
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Magnetic Resonance Materials in Physics, Biology and Medicine
Publisher
Springer International Publishing
Citation
Schauman, S.S., Iyer, S.S., Sandino, C.M. et al. Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction. Magn Reson Mater Phy (2025).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.