MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydrogel Microparticle‐Templated Anti‐Solvent Crystallization of Small‐Molecule Drugs

Author(s)
Bora, Meghali; Hsu, Myat Noe; Khan, Saif A; Doyle, Patrick S
Thumbnail
DownloadPublished version (1.805Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivatives https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Conventional formulation strategies for hydrophobic small‐molecule drug products frequently include mechanical milling to decrease active pharmaceutical ingredient (API) crystal size and subsequent granulation processes to produce an easily handled powder. A hydrogel‐templated anti‐solvent crystallization method is presented for the facile fabrication of microparticles containing dispersed nanocrystals of poorly soluble API. Direct crystallization within a porous hydrogel particle template yields core–shell structures in which the hydrogel core containing API nanocrystals is encased by a crystalline API shell. The process of controllable loading (up to 64% w/w) is demonstrated, and tailored dissolution profiles are achieved by simply altering the template particle size. API release is well described by a shrinking core model. Overall, the approach is a simple, scalable and potentially generalizable method that enables novel means of independently controlling both API crystallization and excipient characteristics, offering a “designer” drug particle system.
Date issued
2022-04
URI
https://hdl.handle.net/1721.1/158282
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Advanced Healthcare Materials
Publisher
Wiley
Citation
Bora, Meghali, Hsu, Myat Noe, Khan, Saif A and Doyle, Patrick S. 2022. "Hydrogel Microparticle‐Templated Anti‐Solvent Crystallization of Small‐Molecule Drugs." Advanced Healthcare Materials, 11 (8).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.