MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Review of Pnictogenides for Next-Generation Anode Materials for Sodium-Ion Batteries

Author(s)
Ha, Sion; Kim, Junhee; Kim, Dong Won; Suh, Jun Min; Kim, Kyeong-Ho
Thumbnail
Downloadbatteries-11-00054-v2.pdf (9.919Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
With the growing market of secondary batteries for electric vehicles (EVs) and grid-scale energy storage systems (ESS), driven by environmental challenges, the commercialization of sodium-ion batteries (SIBs) has emerged to address the high price of lithium resources used in lithium-ion batteries (LIBs). However, achieving competitive energy densities of SIBs to LIBs remains challenging due to the absence of high-capacity anodes in SIBs such as the group-14 elements, Si or Ge, which are highly abundant in LIBs. This review presents potential candidates in metal pnictogenides as promising anode materials for SIBs to overcome the energy density bottleneck. The sodium-ion storage mechanisms and electrochemical performance across various compositions and intrinsic physical and chemical properties of pnictogenide have been summarized. By correlating these properties, strategic frameworks for designing advanced anode materials for next-generation SIBs were suggested. The trade-off relation in pnictogenides between the high specific capacities and the failure mechanism due to large volume expansion has been considered in this paper to address the current issues. This review covers several emerging strategies focused on improving both high reversible capacity and cycle stability.
Date issued
2025-01-29
URI
https://hdl.handle.net/1721.1/158294
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Batteries
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Ha, S.; Kim, J.; Kim, D.W.; Suh, J.M.; Kim, K.-H. A Review of Pnictogenides for Next-Generation Anode Materials for Sodium-Ion Batteries. Batteries 2025, 11, 54.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.