MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting Mortality in Subarachnoid Hemorrhage Patients Using Big Data and Machine Learning: A Nationwide Study in Türkiye

Author(s)
Khaniyev, Taghi; Cekic, Efecan; Gecici, Neslihan Nisa; Can, Sinem; Ata, Naim; Ulgu, Mustafa Mahir; Birinci, Suayip; Isikay, Ahmet Ilkay; Bakir, Abdurrahman; Arat, Anil; Hanalioglu, Sahin; ... Show more Show less
Thumbnail
Downloadjcm-14-01144.pdf (1.036Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Background/Objective: Subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality rates, necessitating prognostic algorithms to guide decisions. Our study evaluates the use of machine learning (ML) models for predicting 1-month and 1-year mortality among SAH patients using national electronic health records (EHR) system. Methods: Retrospective cohort of 29,274 SAH patients, identified through national EHR system from January 2017 to December 2022, was analyzed, with mortality data obtained from central civil registration system in Türkiye. Variables included (n = 102) pre- (n = 65) and post-admission (n = 37) data, such as patient demographics, clinical presentation, comorbidities, laboratory results, and complications. We employed logistic regression (LR), decision trees (DTs), random forests (RFs), and artificial neural networks (ANN). Model performance was evaluated using area under the curve (AUC), average precision, and accuracy. Feature significance analysis was conducted using LR. Results: The average age was 56.23 ± 16.45 years (47.8% female). The overall mortality rate was 22.8% at 1 month and 33.3% at 1 year. One-month mortality increased from 20.9% to 24.57% (p < 0.001), and 1-year mortality rose from 30.85% to 35.55% (p < 0.001) in the post-COVID period compared to the pre-COVID period. For 1-month mortality prediction, the ANN, LR, RF, and DT models achieved AUCs of 0.946, 0.942, 0.931, and 0.916, with accuracies of 0.905, 0.901, 0.893, and 0.885, respectively. For 1-year mortality, the AUCs were 0.941, 0.927, 0.926, and 0.907, with accuracies of 0.884, 0.875, 0.861, and 0.851, respectively. Key predictors of mortality included age, cardiopulmonary arrest, abnormal laboratory results (such as abnormal glucose and lactate levels) at presentation, and pre-existing comorbidities. Incorporating post-admission features (n = 37) alongside pre-admission features (n = 65) improved model performance for both 1-month and 1-year mortality predictions, with average AUC improvements of 0.093 ± 0.011 and 0.089 ± 0.012, respectively. Conclusions: Our study demonstrates the effectiveness of ML models in predicting mortality in SAH patients using big data. LR models’ robustness, interpretability, and feature significance analysis validate its importance. Including post-admission data significantly improved all models’ performances. Our results demonstrate the utility of big data analytics in population-level health outcomes studies.
Date issued
2025-02-10
URI
https://hdl.handle.net/1721.1/158299
Department
Sloan School of Management
Journal
Journal of Clinical Medicine
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Khaniyev, T.; Cekic, E.; Gecici, N.N.; Can, S.; Ata, N.; Ulgu, M.M.; Birinci, S.; Isikay, A.I.; Bakir, A.; Arat, A.; et al. Predicting Mortality in Subarachnoid Hemorrhage Patients Using Big Data and Machine Learning: A Nationwide Study in Türkiye. J. Clin. Med. 2025, 14, 1144.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.